Database scalability myth (again)

A common myth that has been perpetrated is that relational database do not scale beyond two or three nodes. That, and the CAP Theorem are considered to be the reason why relational databases are unscalable and why NoSQL is the only feasible solution!

I ran into a very thought provoking article that makes just this case yesterday. You can read that entire post here. In this post, the author Srinath Perera provides an interesting template for choosing the data store for an application. In it, he makes the case that relational databases do not scale beyond 2 or 5 nodes. He writes,

The low scalability class roughly denotes the limits of RDBMS where they can be scaled by adding few replicas. However, data synchronization is expensive and usually RDBMSs do not scale for more than 2-5 nodes. The “Scalable” class roughly denotes data sharded (partitioned) across many nodes, and high scalability means ultra scalable systems like Google.

In 2002, when I started at Netezza, the first system I worked on (affectionately called Monolith) had almost 100 nodes. The first production class “Mercury” system had 108 nodes (112 nodes, 4 spares). By 2006, the systems had over 650 nodes and more recently much larger systems have been put into production. Yet, people still believe that relational databases don’t scale beyond two or three nodes!

Systems like ParElastic (Elastic Transparent Sharding) can certainly scale to much more than two or three nodes, and I’ve run prototype systems with upto 100 nodes on Amazon EC2!

Srinath’s post does contain an interesting perspective on unstructured and semi-structured data though, one that I think most will generally agree with.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s